On bounds for eigenvalues of real symmetric matrices
نویسندگان
چکیده
منابع مشابه
Bounds on the Extreme Eigenvalues of Real Symmetric Toeplitz Matrices
We derive upper and lower bounds on the smallest and largest eigenvalues, respectively, of real symmetric Toeplitz matrices. The bounds are rst obtained for positive-deenite matrices and then extended to the general real symmetric case. Our bounds are computed as the roots of rational and polynomial approximations to spectral, or secular, equations. The decomposition of the spectrum into even a...
متن کاملExtreme eigenvalues of real symmetric Toeplitz matrices
We exploit the even and odd spectrum of real symmetric Toeplitz matrices for the computation of their extreme eigenvalues, which are obtained as the solutions of spectral, or secular, equations. We also present a concise convergence analysis for a method to solve these spectral equations, along with an efficient stopping rule, an error analysis, and extensive numerical results.
متن کاملReal symmetric matrices 1 Eigenvalues and eigenvectors
A matrix D is diagonal if all its off-diagonal entries are zero. If D is diagonal, then its eigenvalues are the diagonal entries, and the characteristic polynomial of D is fD(x) = ∏i=1(x−dii), where dii is the (i, i) diagonal entry of D. A matrix A is diagonalisable if there is an invertible matrix Q such that QAQ−1 is diagonal. Note that A and QAQ−1 always have the same eigenvalues and the sam...
متن کاملBounds on Real Eigenvalues and Singular Values of Interval Matrices
We study bounds on real eigenvalues of interval matrices, and our aim is to develop fast computable formulae that produce as-sharp-as-possible bounds. We consider two cases: general and symmetric interval matrices. We focus on the latter case, since on one hand such interval matrices have many applications in mechanics and engineering, and on the other many results from classical matrix analysi...
متن کاملAnalysis of Eigenvalue Bounds for Real Symmetric Interval Matrices
In this paper, we present several verifiable conditions for eigenvalue intervals of real symmetric interval matrices overlapping or not overlapping. To above cases, two new methods with algorithms for computing eigenvalue bounds of real symmetric matrices are developed. We can estimate eigenvalue bounds moving away the assumption that two intervals containing two eigenvalues of real symmetric i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1981
ISSN: 0024-3795
DOI: 10.1016/0024-3795(81)90151-8